THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Tutorial 10 17th November2022

- Tutorial problems will be posted every Wednesday, provided there is a tutorial class on the Thursday same week. You are advised to try out the problems before attending tutorial classes, where the questions will be discussed.
- Solutions to tutorial problems will be posted after tutorial classes.
- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.
- 1. Determine whether the following functions are uniformly continuous. Justify your answers.
 - (a) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^n$ for $n \ge 2$.
 - (b) $f:[0,\infty) \to \mathbb{R}$ defined by $f(x) = x^{1/n}$.
- 2. Let $f:(a,b) \to \mathbb{R}$ be a uniformly continuous function, show that it is bounded.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous, if f^2 is uniformly continuous, is it true that f is also uniformly continuous?
- 4. Suppose $f, g : A \to \mathbb{R}$ are bounded, uniformly continuous functions, prove that fg is also uniformly continuous. Provide a counter-example to the claim if the boundedness assumption is dropped.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous periodic function, i.e. there exists some p > 0 so that f(x+p) = f(x) for any $x \in \mathbb{R}$. Prove that f is bounded and uniformly continuous.
- 6. Let $f : A \to \mathbb{R}$ be a function, for any $\delta > 0$, define

$$\omega_f(\delta) := \sup\{ |f(x) - f(y)| : x, y \in A, |x - y| < \delta \}.$$

Show ω is called the modulus of continuity of f.

- (a) Prove that f is uniformly continuous on A if and only if $\lim_{\delta \to 0} \omega_f(\delta) = 0$.
- (b) Compute $\omega_f(\delta)$ for the function $f(x) = \sin(1/x)$ defined on (0, 1). What does it say about the uniform continuity of f?
- (c) If f is a uniformly continuous function on A = ℝ, prove that ω_f(δ) when regarded as a function ω_f : [0,∞) → [0,∞), is uniformly continuous. (Hint: Try to show ω_{ω_f} ≤ ω_f.)
- 7. Let $f: [-1,0) \cup (0,1] \to \mathbb{R}$ be a continuous function, prove that it is uniformly continuous if and only if $\lim_{x\to 0} f$ exists.
- 8. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, such that $\lim_{n \in \mathbb{N}, n \to \infty} f(n) = 0$. First come up with an example where $\lim_{x \to \infty} f(x) \neq 0$. Now further assume that $f(x^2)$ is uniformly continuous, prove that $\lim_{x \to \infty} f(x) = 0$.